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Abstract

AMS radiocarbon cross-dating of plant debris and marine shells trapped in a lake basin on Mount St. Hilaire (Québec, Canada) provides a

direct assessment of a reservoir effect totaling ca. 1800 14C years during the early stage of Champlain Sea. Pollen-based extrapolation of

bottommost ages on terrestrial plant macrofossils in sediments of this lake, and of another lake nearby support an estimate of 11,100 F 100
14C yr B.P. for marine invasion in the Central St. Lawrence River Lowlands. Results indicate a 400–1000 years younger regional chronology

of ice retreat, now congruent with the one inferred from the New England varve chronology. This is a summary of a longer paper to be

published in French.
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Marine shells are abundant in sediments from postglacial

seas of glacio-isostatic origin. Theoretically, they represent

appropriate material for dating marine and glacial episodes

at the Pleistocene–Holocene transition. However, local

marine reservoir effects are often unknown, or variable

through time and with the species dated (Björck et al., 2003;

England et al., 2003; Hutchinson et al., 2004; Ridge et al.,

2001; Sutherland, 1986; Wastegård and Schoning, 1997). In

the St. Lawrence River Lowlands (Canada), the chronology

of ice retreat was based mainly on shell dates from

Champlain Sea and Goldthwait Sea shore deposits (until

the question of local marine 14C reservoir correction has

been investigated more thoroughly) (Occhietti et al., 2004).

We report here on one such 14C reservoir correction

obtained from a rare paleogeographical setting. Palynolog-

ically controlled radiocarbon ages from early terrestrial plant

debris in lake sediments prompt revision of the regional

chronology of ice retreat. Full assessment of existing
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chronological data for the St. Lawrence River Lowlands is

presented in a longer paper to be published in French

(Occhietti and Richard, in press).

Mount St. Hilaire, the highest (411 m) of the Mon-

teregian Hills (Cretaceous intrusions in Ordovician sedi-

mentary rocks) in the St. Lawrence Lowlands, east of

Montréal (Fig. 1a), was an island in the proglacial, then

postglacial, Champlain Sea (Fig. 1b). Two bedrock basins

located, respectively, above and under the altitudinal limit

of marine waters (ca. 190–200 m: David, 1972; Parent and

Occhietti, 1988) accumulated ca. 10 m of postglacial

sediments (Fig. 1b). The Hemlock Carr basin (a 5 ha,

tree-covered swamp formerly a lake; altitude: 243 m; 458
33V 24W N, 738 08V 27W W) drains a 62 ha watershed.

Reservoir Hertel (31 ha; altitude: 173 m; 458 32V 45W N,

738 09V 08W W) was expanded from a lower (169 m),

smaller (15 ha), natural lake by artificial damming since

1750 A.D.; it drains the central depression (373 ha).

Sediments from Hemlock Carr were collected with a

Russian sampler, and those from Lake Hertel with a

Livingstone sampler; both penetrated to the underlying till

(Fig. 1c). Lasalle (1966) compiled pollen diagrams for the

same sites and obtained basal 14C ages on bulk, lacustrine
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Figure 1. (a) Location map of Mount St. Hilaire among the Monteregian Hills (black) east of Montréal in the St. Lawrence Lowlands (shaded); (b) location of

Hemlock Carr and Lake Hertel with their watershed (dashed lines), their altitudinal setting (dotted contour lines in meters) relative to the limit of Champlain

Sea (gray shade outside thick dotted line on map, and on cross-section above), and location of the sediment cores (right: marine sediments are shown in white

on core HERCX); (c) sediment type, depth of AMS radiocarbon dates in conventional 14C years B.P., loss on ignition (% LOI) and pollen concentration (PC, in

grains cm�3) of the basal sediments of Hemlock Carr (left) and Lake Hertel (right). The pollen-based chronological extrapolation zone is indicated (see text).

The entire marine unit spans ca. 330 years.
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sediments. Our study uses AMS radiocarbon dating of

terrestrial plant debris and includes pollen concentration

assessments (Benninghoff, 1962) along with continuous,

centimetric loss on ignition (LOI) analyses (Dean, 1974)

for organic matter content (Fig. 1c).
A previously undetected fossiliferous marine deposit is

present under Lake Hertel’s sediments (Figs. 1b and c). Four

conventional ages between 12,290 and 12,050 14C yr B.P.

were obtained from marine shells and Foraminifera (Table 1,

Fig. 1c). Considering the age of 10,510 F 40 14C yr B.P.



P.J.H. Richard, S. Occhietti / Quaternary Research 63 (2005) 353–358 355
(Table 1) on terrestrial plant debris enclosed in the marine

sediments, the total reservoir effect on shells is ~1780 14C

years; the local reservoir effect is thus 137014C years after a

standard reservoir correction of �410 years. This local

effect is due to a combination of factors: (1) input of

bedrock-derived, dissolved carbon from glacial meltwaters;

(2) stratification of meltwaters over marine waters (Hillaire-

Marcel, 1981); (3) enhanced non-equilibration of the marine

waters with the atmospheric 14C due to seasonal ice; (4)

confinement of the ancient marine bay (Fig. 1b) on a partly

carbonate bedrock. Finally, the feeding habit of the dated

marine organisms (e.g., bottom feeders vs. suspension

feeders) may influence the radiocarbon age (Dyke, 2004;

Dyke et al., 2003a; England et al., 2003). Our cross-dating

confirms the old carbon enrichment of marine shells living

in top waters during the early Champlain Sea episode

(Rodrigues, 1988, 1992).

The local reservoir effect during the entire Champlain

Sea episode is expected to be variable through time (e.g.,

350 years between wood and shells from late Champlain
Table 1

Chronological data on Hemlock Carr and Lake Hertel

Deptha (cm) Age, 14C yr B.P.b Organisms AMS

Hemlock Carr (core HC250_60-1)

865–867 9420 F 40 Dryas integrifolia

Saxifraga stellari

Vaccinium uligino

Salix dwarf

Betula glandulosa

Picea mariana ty

Betula papyrifera

Pinus strobus

902–903 10,100 F 40 Salix herbacea

Dryas integrifolia

Oxyria digyna

939–940 10,850 F 40 Salix herbacea

Dryas integrifolia

Senecio sp.

Lake Hertel (water depth: 8,6 m)

742–743 9280 F 90 Picea or Larix w

788–793 10,210 F 60 Dryas integrifolia

Salix herbacea

cf. Potentilla,

cf. Cerastium,

cf. Polygonaceae

leaf fragments

835–845 12,050 F 80 Elphidium cf. exc

850–851 12,290 F 40 Macoma sp.

836–860c 10,510 F 60 Dryas integrifolia

Salix herbacea, S

cf. Saxifraga

Shepherdia canad

Brassicaceae

Carex, Juncus

885–889 12,180 F 40 Macoma sp.

908–909 12,200 F 80 Portlandia arctica

a Depth from surface (Hemlock Carr) or water-sediment interface (Lake Hertel).
b Radiocarbon ages on marine organisms shown in italics.
c 13 basal cores were necessary to find the dated plant debris.
Sea sediments in the Québec City area; Occhietti et al.,

2001a) and with location, as well as being different for the

various organisms dated; finding reservoir corrections for

Champlain Sea shell ages throughout the episode thus

seems an intractable task (Dyke, 2004). Fortunately,

combination of pollen analyses of sediments, and AMS-

dating of early postglacial terrestrial plant debris in Lake

Hertel and at Hemlock Carr provides an alternative for

deglaciation chronology because of the strategic location of

the two sites (Fig. 1b).

The AMS age of 10,850 F 40 14C yr B.P. (Table 1, Fig.

1c) on lowest terrestrial plant debris at Hemlock Carr

prompts us to reject the basal age of 12,570 F 220 14C yr

B.P. (GSC-419) obtained by Lasalle (1966). The discrep-

ancy may be due to carbonates derived from surrounding

rocks; marl deposits are present nearby in the basin. Taking

into account the time represented by the pollen grains

accumulated in the 18.5-cm-thick deposits beneath the dated

layer (Fig. 1c), the minimum age for ice retreat around

Hemlock Carr is estimated at 11,250 F 150 14C yr B.P. The
dated d13C (x) Laboratory numbe

�27.2 Beta-176151

s

sum

pe

�27.1 Beta-176152

�27.7 Beta-176153

ood — TO-8734

�28.3 Beta-178841

shrub twig,

avatum — TO-10248

�0.5 Beta-178100

�28.6 Beta-179065

alix sp.

ensis

�2.4 Beta-177292

— TO-10249
r
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extrapolated time span is given by the cumulative pollen

concentration (PC) in the corresponding sediments (268,290

grains) divided by the pollen accumulation rate (PAR; 1100

grains cm�2 14C yr�1) calculated for the immediately

overlying sediments (Fig. 1c). This gives a minimum

duration because the amount of pollen produced by the

corresponding vegetation earlier in the succession should be

lower (see King, 1985). The extrapolated time span is

similar in a twin basal core with different clastic sediment

accumulation rates (Occhietti and Richard, in press). The

estimated error (F 150 yr) is obtained by using a minimum

and a maximum estimate for the PAR, considering the fact

the pollen assemblages indicate an initial cold desert

landscape succeeded by tundra (see species dated, Table
Figure 2. Chronology of ice retreat in south-central Québec and northern New-Eng

Moraine (LB) (Ridge et al., 2001), Frontier Moraine (Fr), Ulverton-Tingwick M

position of the ice-front at the onset of Champlain Sea (dashed heavy line) with e

lines) in the Québec Appalachians include Saint-Sylvestre (SS), Mount Ham (MH)

of Glacial Lake Candona (dark shading), maximal (diachronous) extent of Champl

in Québec modified after Occhietti et al. (2001b). Glacial lakes, de Geer Sea (maxim

2001). Conterminous States are identified by their code letters.
1). As a temporary nunatak, the upper part of Mount St.

Hilaire was deglaciated a few centuries before the surround-

ing St. Lawrence Lowlands (Figs. 1b and 2).

The AMS age of 10,210 F 60 14C yr B.P. (Table 1, Fig.

1c) on terrestrial plant debris at Lake Hertel invalidates the

age of 10,880 F 260 14C yr B.P. (GSC-482) obtained by

Lasalle (1966) from palynologically correlative bulk lacus-

trine sediments (Fig. 1b). Taking into account the time

represented by the pollen grains accumulated in the 104-

cm-thick deposits beneath the layer that yielded the basal

age of 10,510 F 40 14C yr B.P. on terrestrial plants (Fig.

1c: 367,328 cumulated grains; PAR = 1446 grains cm�2
14C yr�1), the minimum age of the lowermost sediments is

estimated at 10,850 F 100 14C yr B.P. The estimated error
land, in conventional 14C years B.P. Ages are given for Littleton-Bethlehem

oraine (UT), Saint-Narcisse Moraine (heavy lines), and for the estimated

stimated error (also given for UT and Fr). Other major morainic belts (ligh

, Cherry River-East Angus (Cr-EA), and Dixville-Ditchfield (Dx-Dt). Exten

ain Sea (light shading and dashed contour line), and position of the moraines

al extent), and moraines in New England modified after Ridge et al. (1999
t

t

,
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is smaller here due to more uniform tundra pollen

assemblages and concentration throughout the sedimentary

interval (Fig. 1c).

Since Mount St. Hilaire was located some 30–40 km

north of the position of the ice front when Champlain Sea

invaded the St. Lawrence Lowlands (Fig. 2), and applying

an estimated rate of ice retreat of 250 m/yr (Occhietti et al.,

2004), the age of the regional invasion of Champlain Sea is

thus estimated at 11,100 F 100 14C yr B.P. The event

consequently occurred towards the end of the Allerbd. This
age also dates the end of proglacial Lake Candona (Fig. 2),

that is, the ultimate glaciolacustrine phase resulting from the

coalescence of Glacial Lakes Iroquois, Vermont and

Memphremagog (Parent and Occhietti, 1988). Our esti-

mated age is in agreement with the age of 11,150 14C yr B.P.

proposed for this event by Anderson (1988), from the

palynological study of a section exposing the lacustrine to

marine transition, correlated with radiocarbon-dated lake

sediments in eastern Ontario. It is also consistent with the

radiocarbon dating of the New England varve chronology

(Ridge et al., 1999, 2001).

A new chronology of ice retreat is thus proposed for

southern Québec (Fig. 2). We accept the age of 11,900 14C

yr B.P. for the Littleton-Bethlehem Moraine in New

Hampshire (Ridge et al., 1999). The age of the Frontier

Moraine is estimated at 11,550 F 150 14C yr B.P., and that

for the Ulverton-Tingwick Moraine is set at 11,200 F 150
14C yr B.P. This chronology is 400 F 100 years younger

than what is proposed in the most recent synthesis on the

chronology of ice retreat at the continent scale (Dyke et al.,

2003b), and ca. 1000 years younger than the still widely

cited Dyke and Prest (1987) chronology. At the regional

scale, the chronology proposed by Parent and Occhietti

(1999) and Occhietti et al. (2001b) is now viewed as being

ca. 900 years too old, and the most recent one (Occhietti et

al., 2004), ca. 550 years too old.

Glacial Lake Candona covered about 30,000 km2,

including Lake Post-Iroquois, glacial Lake Vermont, glacial

Lake Memphremagog, and a deglaciated portion of the St.

Lawrence Valley (Fig. 2). Drainage of Lake Candona at its

northeastern edge caused a lowering of the water plane of 30

to 50 m (Parent and Occhietti, 1988), and a sudden

freshwater influx of the order of 3000 km3 in the North

Atlantic Ocean, just before the invasion by the Champlain

Sea. Our age estimation of 11,100 F 100 14C yr B.P. for this

event, a century or two before the end of the Allerbd, should
help refine the hypotheses relating such a drainage to the

change in thermohaline circulation in the North Atlantic

Ocean (Boyle, 2000), and to the intra-Allerbd Killarney

(cold) episode (Levesque et al., 1993).
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